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Exercise 2.5.15

Solve Laplace’s equation inside a semi-infinite strip (0 < x <∞, 0 < y < H) subject to the

boundary conditions [Hint : In Cartesian coordinates, ∇2u = ∂2u
∂x2

+ ∂2u
∂y2

= 0, inside a semi-infinite

strip (0 ≤ y ≤ H and 0 ≤ x <∞), it is known that if u(x, y) = F (x)G(y), then 1
F
d2F
dx2

= − 1
G
d2G
dy2

.]:

(a)
∂u

∂y
(x, 0) = 0,

∂u

∂y
(x,H) = 0, u(0, y) = f(y)

(b) u(x, 0) = 0, u(x,H) = 0, u(0, y) = f(y)

(c) u(x, 0) = 0, u(x,H) = 0,
∂u

∂x
(0, y) = f(y)

(d)
∂u

∂y
(x, 0) = 0,

∂u

∂y
(x,H) = 0,

∂u

∂x
(0, y) = f(y)

Show that the solution [part (d)] exists only if
´ H
0 f(y) dy = 0.

Solution

Here the Laplace equation will be solved in a semi-infinite rectangular domain. Because the
Laplace equation is linear and homogeneous, it can be solved with the method of separation of
variables.

∂2u

∂x2
+
∂2u

∂y2
= 0

Assume a product solution of the form u(x, y) = X(x)Y (y) and plug it into the PDE.

∂2

∂x2
[X(x)Y (y)] +

∂2

∂y2
[X(x)Y (y)] = 0

X ′′Y +XY ′′ = 0

Divide both sides by X(x)Y (y).
X ′′

X
+
Y ′′

Y
= 0

X ′′

X
= −Y

′′

Y

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

X ′′

X
= −Y

′′

Y
= λ

As a result of separating variables, the PDE has reduced to two ODEs—one in each independent
variable.

X ′′

X
= λ

−Y
′′

Y
= λ


Values of λ for which nontrivial solutions to these ODEs and the associated boundary conditions
exist are called eigenvalues, and the solutions themselves are called eigenfunctions. Note that it
doesn’t matter what side the minus sign is on as long as all eigenvalues are considered.
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Part (a)

Substitute the product solution into the homogeneous boundary conditions.

∂u

∂y
(x, 0) = 0 → X(x)Y ′(0) = 0 → Y ′(0) = 0

∂u

∂y
(x,H) = 0 → X(x)Y ′(H) = 0 → Y ′(H) = 0

Solve the ODE for Y .
Y ′′ = −λY

Check to see if there are positive eigenvalues: λ = µ2.

Y ′′ = −µ2Y

The general solution can be written in terms of sine and cosine.

Y (y) = C1 cosµy + C2 sinµy

Differentiate it with respect to y.

Y ′(y) = µ(−C1 sinµy + C2 cosµy)

Apply the boundary conditions to determine C1 and C2.

Y ′(0) = µ(C2) = 0

Y ′(H) = µ(−C1 sinµH + C2 cosµH) = 0

Since C2 = 0, the second equation reduces to −C1µ sinµH = 0. To avoid the trivial solution, we
insist that C1 6= 0.

sinµH = 0

µH = nπ, n = 1, 2, . . .

µ =
nπ

H

There are positive eigenvalues λ =
(
nπ
H

)2
, and the eigenfunctions associated with them are

Y (y) = C1 cosµy + C2 sinµy → Yn(y) = cos
nπy

H
.

Only positive integers are taken for n because n = 0 leads to the zero eigenvalue, and negative
integers lead to redundant values for λ. Using λ = n2π2

H2 , solve the ODE for X now.

X ′′ =
n2π2

H2
X

The general solution can be written in terms of exponential functions.

X(x) = A exp
(
−nπ
H
x
)
+B exp

(nπ
H
x
)
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In order to prevent the solution from blowing up as x→∞, set B = 0.

X(x) = A exp
(
−nπ
H
x
)

Check to see if zero is an eigenvalue: λ = 0.

Y ′′ = 0

The general solution is a straight line.

Y (y) = C3y + C4

Differentiate it with respect to y.
Y ′(y) = C3

Apply the boundary conditions to determine C3.

Y ′(0) = C3 = 0

Y ′(H) = C3 = 0

C4 remains arbitrary.
Y (y) = C4

This is not the trivial solution, so zero is an eigenvalue. Using λ = 0, solve the ODE for X.

X ′′ = 0

The general solution is a straight line.

X(x) = Dx+ E

In order to prevent the solution from blowing up as x→∞, set D = 0.

X(x) = E

Check to see if there are negative eigenvalues: λ = −γ2.

Y ′′ = γ2Y

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Y (y) = C5 cosh γy + C6 sinh γy

Differentiate it with respect to y.

Y ′(y) = γ(C5 sinh γy + C6 cosh γy)

Apply the boundary conditions to determine C5 and C6.

Y ′(0) = γ(C6) = 0

Y ′(H) = γ(C5 sinh γH + C6 cosh γH) = 0

Since C6 = 0, the second equation reduces to C5γ sinh γH = 0. No nonzero value of γ can satisfy
this equation, so C5 = 0.

Y (y) = 0
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This is the trivial solution, so there are no negative eigenvalues. According to the principle of
superposition, the solution to the PDE is a linear combination of the eigenfunctions
u = Xn(x)Yn(x) over all the eigenvalues.

u(x, y) = A0 +
∞∑
n=1

An exp
(
−nπ
H
x
)
cos

nπy

H

Use the final boundary condition to determine the coefficients, A0 and An.

u(0, y) = A0 +
∞∑
n=1

An cos
nπy

H
= f(y) (1)

Integrate both sides with respect to y from 0 to H to get A0.

ˆ H

0

(
A0 +

∞∑
n=1

An cos
nπy

H

)
dy =

ˆ H

0
f(y) dy

Split up the integral on the left and bring the constants in front.

A0

ˆ H

0
dy︸ ︷︷ ︸

= H

+

∞∑
n=1

An

ˆ H

0
cos

nπy

H
dy︸ ︷︷ ︸

= 0

=

ˆ H

0
f(y) dy

Evaluate the integrals.

A0H =

ˆ H

0
f(y) dy

Therefore,

A0 =
1

H

ˆ H

0
f(y) dy.

To get An, multiply both sides of equation (1) by cos pπyH , where p is an integer.

A0 cos
pπy

H
+

∞∑
n=1

An cos
nπy

H
cos

pπy

H
= f(y) cos

pπy

H

Integrate both sides with respect to y from 0 to H.

ˆ H

0

(
A0 cos

pπy

H
+

∞∑
n=1

An cos
nπy

H
cos

pπy

H

)
dy =

ˆ H

0
f(y) cos

pπy

H
dy

Split up the integrals and bring the constants in front.

A0

ˆ H

0
cos

pπy

H
dy︸ ︷︷ ︸

= 0

+

∞∑
n=1

An

ˆ H

0
cos

nπy

H
cos

pπy

H
dy =

ˆ H

0
f(y) cos

pπy

H
dy

Because the cosine functions are orthogonal, this second integral on the left is zero if n 6= p. Only
if n = p does it yield a nonzero result.

An

ˆ H

0
cos2

nπy

H
dy =

ˆ H

0
f(y) cos

nπy

H
dy
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Evaluate the integral.

An

(
H

2

)
=

ˆ H

0
f(y) cos

nπy

H
dy

Therefore,

An =
2

H

ˆ H

0
f(y) cos

nπy

H
dy.

Part (b)

Substitute the product solution into the homogeneous boundary conditions.

u(x, 0) = 0 → X(x)Y (0) = 0 → Y (0) = 0

u(x,H) = 0 → X(x)Y (H) = 0 → Y (H) = 0

Solve the ODE for Y .
Y ′′ = −λY

Check to see if there are positive eigenvalues: λ = µ2.

Y ′′ = −µ2Y

The general solution can be written in terms of sine and cosine.

Y (y) = C1 cosµy + C2 sinµy

Apply the boundary conditions to determine C1 and C2.

Y (0) = C1 = 0

Y (H) = C1 cosµH + C2 sinµH = 0

Since C1 = 0, the second equation reduces to C2 sinµH = 0. To avoid the trivial solution, we
insist that C2 6= 0.

sinµH = 0

µH = nπ, n = 1, 2, . . .

µ =
nπ

H

There are positive eigenvalues λ =
(
nπ
H

)2
, and the eigenfunctions associated with them are

Y (y) = C1 cosµy + C2 sinµy → Yn(y) = sin
nπy

H
.

Only positive integers are taken for n because n = 0 leads to the zero eigenvalue, and negative
integers lead to redundant values for λ. Using λ = n2π2

H2 , solve the ODE for X now.

X ′′ =
n2π2

H2
X

The general solution can be written in terms of exponential functions.

X(x) = A exp
(
−nπ
H
x
)
+B exp

(nπ
H
x
)
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In order to prevent the solution from blowing up as x→∞, set B = 0.

X(x) = A exp
(
−nπ
H
x
)

Check to see if zero is an eigenvalue: λ = 0.

Y ′′ = 0

The general solution is a straight line.

Y (y) = C3y + C4

Apply the boundary conditions to determine C3 and C4.

Y (0) = C4 = 0

Y (H) = C3H + C4 = 0

Since C4 = 0, the second equation reduces to C3H = 0, which means C3 = 0.

Y (y) = 0

This is the trivial solution, so zero is not an eigenvalue. Check to see if there are negative
eigenvalues: λ = −γ2.

Y ′′ = γ2Y

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Y (y) = C5 cosh γy + C6 sinh γy

Apply the boundary conditions to determine C5 and C6.

Y (0) = C5 = 0

Y (H) = C5 cosh γH + C6 sinh γH = 0

Since C5 = 0, the second equation reduces to C6 sinh γH = 0. No nonzero value of γ can satisfy
this equation, so C6 = 0.

Y (y) = 0

This is the trivial solution, so there are no negative eigenvalues. According to the principle of
superposition, the solution to the PDE is a linear combination of the eigenfunctions
u = Xn(x)Yn(x) over all the eigenvalues.

u(x, y) =

∞∑
n=1

An exp
(
−nπ
H
x
)
sin

nπy

H

Use the final boundary condition to determine the coefficients An.

u(0, y) =

∞∑
n=1

An sin
nπy

H
= f(y)
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Multiply both sides by sin pπy
H , where p is an integer.

∞∑
n=1

An sin
nπy

H
sin

pπy

H
= f(y) sin

pπy

H

Integrate both sides with respect to y from 0 to H.

ˆ H

0

∞∑
n=1

An sin
nπy

H
sin

pπy

H
dy =

ˆ H

0
f(y) sin

pπy

H
dy

Split up the integrals and bring the constants in front.

∞∑
n=1

An

ˆ H

0
sin

nπy

H
sin

pπy

H
dy =

ˆ H

0
f(y) sin

pπy

H
dy

Because the sine functions are orthogonal, the integral on the left is zero if n 6= p. Only if n = p
does it yield a nonzero result.

An

ˆ H

0
sin2

nπy

H
dy =

ˆ H

0
f(y) sin

nπy

H
dy

Evaluate the integral.

An

(
H

2

)
=

ˆ H

0
f(y) sin

nπy

H
dy

Therefore,

An =
2

H

ˆ H

0
f(y) sin

nπy

H
dy.

Part (c)

Substitute the product solution into the homogeneous boundary conditions.

u(x, 0) = 0 → X(x)Y (0) = 0 → Y (0) = 0

u(x,H) = 0 → X(x)Y (H) = 0 → Y (H) = 0

Solve the ODE for Y .
Y ′′ = −λY

Check to see if there are positive eigenvalues: λ = µ2.

Y ′′ = −µ2Y

The general solution can be written in terms of sine and cosine.

Y (y) = C1 cosµy + C2 sinµy

Apply the boundary conditions to determine C1 and C2.

Y (0) = C1 = 0

Y (H) = C1 cosµH + C2 sinµH = 0
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Since C1 = 0, the second equation reduces to C2 sinµH = 0. To avoid the trivial solution, we
insist that C2 6= 0.

sinµH = 0

µH = nπ, n = 1, 2, . . .

µ =
nπ

H

There are positive eigenvalues λ =
(
nπ
H

)2
, and the eigenfunctions associated with them are

Y (y) = C1 cosµy + C2 sinµy → Yn(y) = sin
nπy

H
.

Only positive integers are taken for n because n = 0 leads to the zero eigenvalue, and negative
integers lead to redundant values for λ. Using λ = n2π2

H2 , solve the ODE for X now.

X ′′ =
n2π2

H2
X

The general solution can be written in terms of exponential functions.

X(x) = A exp
(
−nπ
H
x
)
+B exp

(nπ
H
x
)

In order to prevent the solution from blowing up as x→∞, set B = 0.

X(x) = A exp
(
−nπ
H
x
)

Check to see if zero is an eigenvalue: λ = 0.

Y ′′ = 0

The general solution is a straight line.

Y (y) = C3y + C4

Apply the boundary conditions to determine C3 and C4.

Y (0) = C4 = 0

Y (H) = C3H + C4 = 0

Since C4 = 0, the second equation reduces to C3H = 0, which means C3 = 0.

Y (y) = 0

This is the trivial solution, so zero is not an eigenvalue. Check to see if there are negative
eigenvalues: λ = −γ2.

Y ′′ = γ2Y

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Y (y) = C5 cosh γy + C6 sinh γy
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Apply the boundary conditions to determine C5 and C6.

Y (0) = C5 = 0

Y (H) = C5 cosh γH + C6 sinh γH = 0

Since C5 = 0, the second equation reduces to C6 sinh γH = 0. No nonzero value of γ can satisfy
this equation, so C6 = 0.

Y (y) = 0

This is the trivial solution, so there are no negative eigenvalues. According to the principle of
superposition, the solution to the PDE is a linear combination of the eigenfunctions
u = Xn(x)Yn(x) over all the eigenvalues.

u(x, y) =
∞∑
n=1

An exp
(
−nπ
H
x
)
sin

nπy

H

Differentiate it with respect to x.

∂u

∂x
=

∞∑
n=1

An

(
−nπ
H

)
exp

(
−nπ
H
x
)
sin

nπy

H

Use the final boundary condition to determine the coefficients An.

∂u

∂x
(0, y) =

∞∑
n=1

An

(
−nπ
H

)
sin

nπy

H
= f(y)

Multiply both sides by sin pπy
H , where p is an integer.

∞∑
n=1

An

(
−nπ
H

)
sin

nπy

H
sin

pπy

H
= f(y) sin

pπy

H

Integrate both sides with respect to y from 0 to H.
ˆ H

0

∞∑
n=1

An

(
−nπ
H

)
sin

nπy

H
sin

pπy

H
dy =

ˆ H

0
f(y) sin

pπy

H
dy

Split up the integrals and bring the constants in front.

∞∑
n=1

An

(
−nπ
H

)ˆ H

0
sin

nπy

H
sin

pπy

H
dy =

ˆ H

0
f(y) sin

pπy

H
dy

Because the sine functions are orthogonal, the integral on the left is zero if n 6= p. Only if n = p
does it yield a nonzero result.

An

(
−nπ
H

) ˆ H

0
sin2

nπy

H
dy =

ˆ H

0
f(y) sin

nπy

H
dy

Evaluate the integral.

An

(
−nπ
H

)(H
2

)
=

ˆ H

0
f(y) sin

nπy

H
dy

Therefore,

An = − 2

nπ

ˆ H

0
f(y) sin

nπy

H
dy.
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Part (d)

Substitute the product solution into the homogeneous boundary conditions.

∂u

∂y
(x, 0) = 0 → X(x)Y ′(0) = 0 → Y ′(0) = 0

∂u

∂y
(x,H) = 0 → X(x)Y ′(H) = 0 → Y ′(H) = 0

Solve the ODE for Y .
Y ′′ = −λY

Check to see if there are positive eigenvalues: λ = µ2.

Y ′′ = −µ2Y

The general solution can be written in terms of sine and cosine.

Y (y) = C1 cosµy + C2 sinµy

Differentiate it with respect to y.

Y ′(y) = µ(−C1 sinµy + C2 cosµy)

Apply the boundary conditions to determine C1 and C2.

Y ′(0) = µ(C2) = 0

Y ′(H) = µ(−C1 sinµH + C2 cosµH) = 0

Since C2 = 0, the second equation reduces to −C1µ sinµH = 0. To avoid the trivial solution, we
insist that C1 6= 0.

sinµH = 0

µH = nπ, n = 1, 2, . . .

µ =
nπ

H

There are positive eigenvalues λ =
(
nπ
H

)2
, and the eigenfunctions associated with them are

Y (y) = C1 cosµy + C2 sinµy → Yn(y) = cos
nπy

H
.

Only positive integers are taken for n because n = 0 leads to the zero eigenvalue, and negative
integers lead to redundant values for λ. Using λ = n2π2

H2 , solve the ODE for X now.

X ′′ =
n2π2

H2
X

The general solution can be written in terms of exponential functions.

X(x) = A exp
(
−nπ
H
x
)
+B exp

(nπ
H
x
)
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In order to prevent the solution from blowing up as x→∞, set B = 0.

X(x) = A exp
(
−nπ
H
x
)

Check to see if zero is an eigenvalue: λ = 0.

Y ′′ = 0

The general solution is a straight line.

Y (y) = C3y + C4

Differentiate it with respect to y.
Y ′(y) = C3

Apply the boundary conditions to determine C3.

Y ′(0) = C3 = 0

Y ′(H) = C3 = 0

C4 remains arbitrary.
Y (y) = C4

This is not the trivial solution, so zero is an eigenvalue. Using λ = 0, solve the ODE for X.

X ′′ = 0

The general solution is a straight line.

X(x) = Dx+ E

In order to prevent the solution from blowing up as x→∞, set D = 0.

X(x) = E

Check to see if there are negative eigenvalues: λ = −γ2.

Y ′′ = γ2Y

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Y (y) = C5 cosh γy + C6 sinh γy

Differentiate it with respect to y.

Y ′(y) = γ(C5 sinh γy + C6 cosh γy)

Apply the boundary conditions to determine C5 and C6.

Y ′(0) = γ(C6) = 0

Y ′(H) = γ(C5 sinh γH + C6 cosh γH) = 0

Since C6 = 0, the second equation reduces to C5γ sinh γH = 0. No nonzero value of γ can satisfy
this equation, so C5 = 0.

Y (y) = 0
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This is the trivial solution, so there are no negative eigenvalues. According to the principle of
superposition, the solution to the PDE is a linear combination of the eigenfunctions
u = Xn(x)Yn(x) over all the eigenvalues.

u(x, y) = A0 +

∞∑
n=1

An exp
(
−nπ
H
x
)
cos

nπy

H

Differentiate it with respect to x.

∂u

∂x
=

∞∑
n=1

An

(
−nπ
H

)
exp

(
−nπ
H
x
)
cos

nπy

H

Use the final boundary condition to determine the coefficients An.

∂u

∂x
(0, y) =

∞∑
n=1

An

(
−nπ
H

)
cos

nπy

H
= f(y)

Multiply both sides by cos pπyH .

∞∑
n=1

An

(
−nπ
H

)
cos

nπy

H
cos

pπy

H
= f(y) cos

pπy

H

Integrate both sides with respect to y from 0 to H.

ˆ H

0

∞∑
n=1

An

(
−nπ
H

)
cos

nπy

H
cos

pπy

H
dy =

ˆ H

0
f(y) cos

pπy

H
dy

Split up the integral on the left and bring the constants in front.

∞∑
n=1

An

(
−nπ
H

)ˆ H

0
cos

nπy

H
cos

pπy

H
dy =

ˆ H

0
f(y) cos

pπy

H
dy

Because the cosine functions are orthogonal, this second integral on the left is zero if n 6= p. Only
if n = p does it yield a nonzero result.

An

(
−nπ
H

) ˆ H

0
cos2

nπy

H
dy =

ˆ H

0
f(y) cos

nπy

H
dy

Evaluate the integral.

An

(
−nπ
H

)(H
2

)
=

ˆ H

0
f(y) cos

nπy

H
dy

Therefore,

An = − 2

nπ

ˆ H

0
f(y) cos

nπy

H
dy.

Note that A0 remains arbitrary.
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The solvability condition will now be obtained.

∇2u = 0

Integrate both sides of the Laplace equation over the semi-infinite rectangular strip of thickness
H. ¨

R
∇2u dA = 0

Rewrite the integrand. ¨
R
∇ ·∇u dA = 0

Apply the two-dimensional divergence theorem to turn this double integral into a
counterclockwise closed loop integral around the boundary.

˛
L
∇u · n̂ ds = 0

Here n̂ is the outward unit vector normal to the boundary.

Split up the line integral into the three segments shown above, L1, L2, and L3. The outward unit
vectors normal to these segments are n̂ = ŷ, n̂ = −x̂, and n̂ = −ŷ, respectively.

ˆ
L1

∇u · ŷ ds+
ˆ
L2

∇u · (−x̂) ds+
ˆ
L3

∇u · (−ŷ) ds = 0

www.stemjock.com



Haberman Applied PDEs 5e: Section 2.5 - Exercise 2.5.15 Page 14 of 14

Evaluate the dot products.

ˆ
L1

∂u

∂y
ds+

ˆ
L2

(
−∂u
∂x

)
ds+

ˆ
L3

(
−∂u
∂y

)
ds = 0

Bring out the minus signs.

ˆ
L1

∂u

∂y
ds−

ˆ
L2

∂u

∂x
ds−

ˆ
L3

∂u

∂y
ds = 0

Along L1, uy is evaluated at y = H; along L2, ux is evaluated at x = 0; and along L3, uy is
evaluated at y = 0.

ˆ
L1

∂u

∂y

∣∣∣∣
y=H

ds−
ˆ
L2

∂u

∂x

∣∣∣∣
x=0

ds−
ˆ
L3

∂u

∂y

∣∣∣∣
y=0

ds = 0

The differential of arc length ds is always positive regardless of whether the path around the
boundary is clockwise or counterclockwise. So don’t mind the orientation when parameterizing
the integration paths.

ˆ ∞

0

∂u

∂y

∣∣∣∣
y=H

dx−
ˆ H

0

∂u

∂x

∣∣∣∣
x=0

dy −
ˆ ∞

0

∂u

∂y

∣∣∣∣
y=0

dx = 0

Substitute the prescribed boundary conditions, uy(x, 0) = 0 and uy(x,H) = 0 and ux(0, y) = f(y).

ˆ ∞

0
0 dx−

ˆ H

0
f(y) dy −

ˆ ∞

0
0 dx = 0

−
ˆ H

0
f(y) dy = 0

Therefore, multiplying both sides by −1,
ˆ H

0
f(y) dy = 0.

In order for a steady-state solution to exist, this solvability condition must be satisfied. f is not
arbitrary.
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